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STEREQOSELECTIVE EPOXIDATION OF ACYCLIC ALLYLIC ALCOHOLS.
A CORRECTION OF OUR PREVIOUS WORK.!
B. E. Rossiter, T. R. Verhoeven,'® and K. B. Sharpless*

Department of Chemistry, Stanford University
Stanford, California 94305

A reinvestigation of the stereoselectivities for the epoxidation of acyclic allylic
alcohols with MCPBA, and with tert-butyl hydroperoxide catalyzed by V'* and Mo*® revealed
a number of errors in our original work! which are rectified. Optimum 0—C—C=C dihedral
angles are proposed.

Several years ago, in collaboration with the Yamamoto/Nozaki group, we reported on the
stereoselective epoxidation of acyclic allylic alcohols with tert-butyl hydroperoxide (TBHP)
catalyzed by vanadium (+5) and moiybdenum (+6).! We have recently discovered errors in our
portion of this work.2 The errors involved both incorrect erythro/threo structural assign-
ments of the epoxidation products as well as inaccurate determinations of the erythro/threo

% one of which

ratios. We had largely accepted the structural assignments of Pierre, et. al.,
he has recently reversed.**® However, most of the errors® in our previous work were due to

our own mistakes. The corrections® to our original publication are presented in Table I, with
the structures of all of the epoxy alcohols being verified by conversion to (and direct com-
parison with authentic samples of) known erythro and threo vicinal diols.” The erythro/threo
ratios have been verified by two independent methods (NMR and GLC). Further substantiation of
these results can be found in the accompanying manuscript® by Dr. E. D. Mihelich, who in-
dependently discovered errors in our earlier work.!

Analysis of the corrected results in Table I reveals a pattern of definite predictive
value. The molybdenum, and especially the vanadium catalyzed epoxidations favor formation
of erythro-epoxy alcohols. This tendency reaches a zenith with geminally disubstituted
olefins 4 and 5. With olefins 7 and 8, which bear alkyl substituents cis to the hydroxyl
bearing carbon, the trend reverses, and threo-epoxy alcohols predominate. In contrast, MCPBA
exhibits a generally weak preference for the threo-isomer {except with olefins 7 and 8 where
a strong preference is observed).

There has been considerable recent interest in assigning optimum 0—C—C=C dihedral
angles for epoxidations of allylic alcohols with both peroxy acids*’® and vanadium cata-
lysts.!%°!1  The conclusions reached in earlier studies drew support from epoxidation results
on conformationally restrained!® tert-butylcyclohexenols, and suggested optimum dihedral
angles of ~150° (peracid epoxidations)®*1%°1! and ~90° (V'* catalyzed epoxidations).!® These
suggested values do not seem to agree very well with our results for acyclic allylic alcohols.
A priori one would expect the sterecselectivities with these conformationally mobile acyclic
substrates to more closely reflect the true preferred transition state geometries.!® Therefore,

we feel that in both the vanadium and the peracid epoxidations somewhat tighter 0—C-C=C
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dihedral angles (vanadium ~50°; peracid ~120°'*) are in better accord with the data. Our
preferred conformations are illustrated in Scheme I for both the peracid (11 and 12) and
vanadium catalyzed (9 and 10) epoxidations. In choosing the angles shown in Scheme I, emphasis
was given to the results with allylic alcohols 4 and 5 (R; and R> = alkyl and 7 and 8 (R, and
R; = alkyl). These two structural types exhibit the largest changes in selectivities over

the parent allylic alcohols (i.e. 1, 2 and 3.

Scheme I. Predicted 0—C—C=C Dihedral Angles:

for V'°, TBHP epoxidations:

R~ R
R %

9, leads to threo product 10, leads to erythro product

for peroxy acid (MCPBA) epoxidations:

H
R
H& ::::ni:f‘4
3
~120°
11, leads to threo product 12, leads to erythro product

The mechanistic picture presented herein, though simplified by considering solely the
interactions within the allyloxy moiety, provides a useful model for prediction of the
stereoselectivity in epoxidations of acyclic allylic alcohols. A more detailed mechanistic
discussion will appear shortly.’
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